题目描述
鼹鼠们在底下开凿了n个洞,由n-1条隧道连接,对于任意的i>1,第i个洞都会和第i/2(取下整)个洞间有一条隧
道,第i个洞内还有ci个食物能供最多ci只鼹鼠吃。一共有m只鼹鼠,第i只鼹鼠住在第pi个洞内,一天早晨,前k只
鼹鼠醒来了,而后n-k只鼹鼠均在睡觉,前k只鼹鼠就开始觅食,最终他们都会到达某一个洞,使得所有洞的ci均大
于等于该洞内醒着的鼹鼠个数,而且要求鼹鼠行动路径总长度最小。现对于所有的1<=k<=m,输出最小的鼹鼠行动
路径的总长度,保证一定存在某种合法方案。
输入
第一行两个数n,m(1<=n,m<=100000),表示有n个洞,m只鼹鼠。
第二行n个整数ci表示第i个洞的食物数。
第三行m个整数pi表示第i只鼹鼠所在洞pi。
输出
输出一行m个整数,第i个整数表示当k=i时最小的鼹鼠行动路径总长度。
样例输入
5 4 0 0 4 1 1 2 4 5 2
样例输出
1 1 2 4
首先考虑建出费用流模型:源点向每个点连边,容量为初始在这个点的鼹鼠数,费用为$0$;每个点向汇点连边,容量为$c_{i}$,费用为$0$,原图有通道的点之间互相连边,容量为$INF$,费用为$1$。每次从给定点(即将源点到一个点的容量$+1$)出发找到一条最短路并将路径上的边建出容量为$1$,费用为$-1$的反向边。这样做显然会$TLE$,我们考虑这个图的特殊性质:根据题意这是个完全二叉树。所以我们可以先树形$DP$求出每个点$i$子树中到它距离最短的点$f[i]$及这个点的编号$g[i]$。因为这是完全二叉树,保证树高是$log_{n}$,所以可以暴力从给定点往上爬来找最短路的折点(即最短路起点和终点的$lca$),然后修改路径上的边权并更新$f$与$g$。即模拟费用流找最短路和建反向边的过程。
#include#include